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RNA velocity provides an approach for inferring cellular state transitions

from single-cell RNA sequencing (scRNA-seq) data. Conventional RNA
velocity models infer universal kinetics from all cells in an scRNA-seq
experiment, resulting in unpredictable performance in experiments

with multi-stage and/or multi-lineage transition of cell states where the
assumption of the same kinetic rates for all cells no longer holds. Here

we present cellDancer, ascalable deep neural network that locally infers
velocity for each cell from its neighbors and then relays a series of local
velocities to provide single-cell resolution inference of velocity kinetics.
In the simulation benchmark, cellDancer shows robust performancein
multiple kinetic regimes, high dropout ratio datasets and sparse datasets.

We show that cellDancer overcomes the limitations of existing RNA velocity
modelsin modeling erythroid maturation and hippocampus development.
Moreover, cellDancer provides cell-specific predictions of transcription,
splicing and degradation rates, which we identify as potential indicators of

cellfatein the mouse pancreas.

A cell may transition to a new fate during or after development in
response to transcriptional factors and epigenetic modifiers that
are modulated by intracellular or external signaling'~. The advent
of single-cell RNA sequencing (scRNA-seq) generated insights into
cell subpopulations, detecting biological factors that influence
cellular state shifts and deciphering cellular response to environ-
mental and immune stimuli in health and disease at single-cell reso-
lution®’. High-throughput scRNA-seq data provide an unbiased and
high-resolution transcriptomic landscape of cellular states®. How-
ever, scCRNA-seq captures only snapshots of a set of cells and does not
explicitly demonstrate dynamical transitions between cellular states.
Thus, trajectory inference algorithms were developed by constructing
a potential branching trajectory based on the similarity in the tran-
scriptomic profiles’ . A major challenge of trajectory inference is to

determine the direction of the trajectories or the root and terminal
cellular states. One way of inferring such directed dynamics of cellular
states is to incorporate ‘RNA velocity”?. RNA velocity correlates the
abundance of the nascent, unspliced mRNAs with that of the mature,
spliced mRNAs using asimple first-order kinetics model. The progres-
sion ofthe current cellular state shifting toward a future state is extrapo-
lated using the RNA velocities across genes. RNA velocity has brought
biological insights to cell differentiation and disease progression®>'°.

RNA velocity was proposed to model the dynamic process of tran-
scription, splicing and degradation of mRNA inasingle cell. This model
was initially applied to circadian-associated genes to extrapolate the
progression of the circadian cycle (24 hours) onthe bulk RNA-seq data
of the mouse liver'?. Later, it was applied to infer the cell fates from
scRNA-seq data, assuming that all cells in an scRNA-seq experiment
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share similar kinetics'>". However, cellular state transitions often
involve multiple stages and/or lineages, each of which may have dissimi-
lar kinetics. The existing velocity models assume uniformkinetics of all
cellsinanscRNA-seq experiment, which may resultin poor predictive
performance when cell subpopulations have dissimilar RNA velocity
kinetics. For example, anumber of genes (for example, Hba-x) exhibit
aboostintheirtranscription rates during mouse erythrocyte matura-
tion, which have opposite predictions by scVelo™. It was also reported
that there are five major branching lineages during the development of
the mouse hippocampus”. The expression of some genes (for example,
Ntrk2), termed branching genes, increase rapidly in several lineages
andslowlyinthe other lineage. RNA velocities inferred by the existing
models'>” were inverted, inwhole or in part, for the branching genes'®.
Thus, the estimation of RNA velocity kinetics is sensitive to heterogene-
ity interms of biological conditions and cell populations.

Here we propose a ‘relay velocity model’ that uses the relay of aseries
oflocal velocities to provide single-cell resolution inference of velocity
kinetics (Fig.1a). Compared to other kinetic models, in the relay velocity
model the cell-specific velocity of each cell is informed by its neighbor
cells and then relays cell-specific velocities. To implement the relay
velocity model, we developed cellDancer, whichis amodel-based deep
neural network (DNN) framework. The cellDancer algorithm separately
trains a DNN for each gene. For a gene, cellDancer assesses the spliced
and unspliced mRNA velocities of each cell in a DNN to calculate the
cell-specifictranscription, splicing and degradation rates (&, fand y) and
to predictthe future spliced and unspliced mRNA by the outputted a, 8
and y using an RNA velocity model. The key step of cellDancer DNNis to
define aloss function to train the DNN based on the similarity between
the predicted future spliced and unspliced mRNA of each cell and the
observation of its neighbor cells. After optimizing the global similarity
between prediction and observation, cellDancer infers a, fand y at a
single-cell resolution rather than bulk rates used in existing methods'>".

We demonstrate that cellDancer extends the velocity estimation
with cell-specific kinetics on heterogeneous cell populations, includ-
ing those involved in erythroid maturation during gastrulation and
those of the hippocampal dentate gyrus during neurogenesis. The
cellDancer algorithm outperforms steady and early switching models
on multi-stage and multi-lineage cell subpopulations. We show that
cell-specific a, B and y could be indicators of fate for cell identity in
the mouse pancreas. cellDancer is available as a highly modularized,
parallelized and scalable implementation.

Results

Learning cell-specific RNA kinetics by arelay velocity model
ThecellDancer algorithmis a deep learning framework to generalize the
estimation of RNA velocity inboth homogeneous and heterogeneous
cell populations from scRNA-seq data by estimating cell-dependent
transcription (a), splicing (8) and degradation (y) rates. Cell-specifica,
Bandywere predicted by an RNA velocity model thatincorporated the
neighbor cells (see details regarding the selection of the neighbor cells
inthe Methods). Specifically, we resolved the RNA velocity kinetics by
estimatingthereactionrates from the weights and biases of the nodes
inaDNN, whichisageneralized framework of velocity estimation (see a
demonstrationinSupplementary Note 1). To train the cellDancer DNN,
we first discretized the original reaction kinetics as follows:

u(t+At) — u(t)
At

S(t+ At) — s(®
At

=a@®)-BOu®,

=BOu®-y®s®,

wheretime tisdiscretized and Atis asmall timeslot. Inour model, a, 8
and y are cell specific. For anindividual gene in cell i, cellDancer used
aDNN o predict cell-specific rates a(t,), 8(t,) and y(¢t,) from the spliced
and unspliced mRNA abundances u(t;) and s(t,) of genes at time ¢t and

neighboring cells of i (Fig. 1b). Second, we extrapolated s(¢, + At) and
u(t;+ At) of celliat time ¢t + At to infer a velocity vector that points from
the currentstate to the futurein the gene phase portrait. We defined a
loss function by summing every cell’s maximum cosine similarity for the
predicted and observed velocity vectors (Methods). Finally, optimized
rates of each cell were obtained by minimizing the loss function (Fig. 1b).

We initially evaluated the training progress of cellDancer on sev-
eral well-studied genes in pancreatic endocrinogenesis and mouse
hippocampus development”. We observed that cellDancer captured
the transcriptional dynamics of these genes (Fig. 1c and Supplemen-
tary Fig.1). Then, we scaled up the performance evaluation of cell-
Dancer on 1,000 simulated mono-kinetic genes with the shared 3, y
and two-step avalues. The predicted parameters are highly correlated
with the ground truth (R* = 0.98 for a/Band 0.93 for y/B; Extended Data
Fig. 1a). Remarkably, cellDancer can identify two clusters of a val-
ues representing active (positive) and repressive expression phases
(centered ~0) on abenchmark dataset, without a prior constraint of a
two-step transcription rate (Extended Data Fig. 1b).

Inferring RNA velocity in multi-rate kinetics

As cellDancer provides the single-cell resolution of a, S and y, we next
examined whether cellDancer could resolve the multi-rate kinetic
regimes. We simulated three multiple kinetic regimes, including tran-
scriptional boost, multi-lineage forward and multi-lineage backward
genes (Extended DataFig.1c-e, right panels, and Methods). Transcrip-
tional boost refers to a boost in the expression induced by a change
in the transcription rate; multi-lineage forward and multi-lineage
backward refer to induction and repression in separate lineages,
respectively. We generated 2,000 cells and 1,000 genes for each
regime. We compared cellDancer with scVelo (dynamic) and velocyto
(static) algorithms and two deep learning algorithms, DeepVelo' and
VeloVAE?, The error rates in cellDancer were significantly lower than
thoseinscVelo, velocyto, DeepVelo and VeloVAE in all three simulated
regimes (Extended DataFig.1c-e; P< 0.001, one-sided Wilcoxon test).
Specifically, cellDancer exhibited the lowest error rate for simulated
transcriptional boost, multi-forward branching and multi-backward
branchingkinetics with 13%, 3% and 9% compared to velocyto, scVelo,
DeepVelo and VeloVAE, respectively (Supplementary Table 1). To test
the effect of imbalanced cell numbers in different lineages or stages,
we downsampled the cells at the stage after transcriptional boost-
ing (Extended Data Fig. 1c) and the cells in lineage 1 (Extended Data
Fig.1d,e). Results showed that cellDancer is not affected by the bias of
cell distribution. Next, we estimated the required number of epochs
to optimize cellDancer DNN. cellDancer converged at 25 epochs for
mono-kinetic, multi-forward and multi-backward branching genes and
100 epochs for transcriptional boost genes (Extended Data Fig. 1f-i).

Delineating transcriptional boost on single-cell resolution

We compared cellDancer to the dynamical model of scVelo on
the scRNA-seq experiment of mouse gastrulation erythropoiesis®
(Extended DataFig.2aand Fig. 2a), in which transcriptional boost genes
were reported®. The vector flow in a uniform manifold approxima-
tion and projection (UMAP) embedding of the transcriptome clearly
suggests that cellDancer recaptures the progression of erythroid dif-
ferentiation (Fig. 2a, top), whereas scVelo’s prediction was reversed™
(Fig. 2a, bottom).

Barile et al.”® identified 89 multiple rate kinetics (MURK) genes,
such as Smim1 and Hba-x, of which transcription rates boost in the
middle of erythroid differentiation, and showed that the prediction
of scVelo was severely affected by the boost of transcription, resulting
inincorrect predicted directions. cellDancer predicted the correct
changes of well-known MURK genes, such as Smimi and Hba-x, on the
phase portraits (Fig. 2b), whereas scVelo, DeepVelo and VeloVAE had
incorrect predictions. Moreover, cellDancer revealed the transcrip-
tional boost by the cell-specific a (Fig. 2b). We next tested the overall
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Fig.1|Predicting RNA velocity in localized cell populations via DNNs.

a, Transcription dynamics of the premature (unspliced) and mature (spliced)
mRNAs are governed by the transcription (a), splicing (8) and degradation

(y) rates. Multi-kinetics genes involve multiple-lineage and/or multi-stage
transitions of the cellular states; hence, cell-dependent rates (a, 8, y).are
required to accurately capture the transcription dynamics of those genes. In
theillustration, the (a, B, y).for cell t are computed by locating the future state
cellin the neighboring cells of ¢ (‘local environment’), assuming that the cells
inthelocal environment share the same («, 8, y). b, cellDancer uses a DNN to
predict cell-specific a, Band y for each gene. The DNN consists of an input layer

with the spliced and unspliced mRNA abundances (u;, s) i=1,2, ..., n.q,, two fully
connected hidden layers each with 100 nodes and an output layer yielding cell-
specific a, fand y. The loss function is defined as the sum of every cell’s cosine
similarity of predicted and observed velocity vectors. The DNN s iteratively
optimized by minimizing the loss function. ¢, The progress of minimizing the
loss function. RNA velocities for the examples of the mono-kinetic gene Sulf2

in pancreatic endocrinogenesis, and the multi-lineage gene Gnaol in mouse
hippocampus maturation is projected onto the phase portraits during the
training process of their DNNs.

prediction of cellDancer on transcriptional boost genes. We applied
cellDancer and scVelo to the 89 MURK genes and projected the velocity
inference to the transcriptome UMAP. cellDancer recaptured the cor-
rectdirectional flow of differentiation using only MURK genes (Fig. 2c),

whereas scVelo, DeepVelo and VeloVAE predicted an opposed direction
inmultiple cell types (Extended Data Fig. 2b).

Next, we demonstrated cellDancer’s capabilities of deciphering
transcriptional changes along the differentiation pseudotime. We
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transcriptional boost. a, The velocities derived from cellDancer (top) are
consistent with the erythroid differentiation but opposite in scVelo dynamic
model (bottom) by using all genes. b, The velocities derived from cellDancer,
scVelo dynamic model, DeepVelo and VeloVAE for the transcriptional boost
genes (Hba-x and Smim1I) areillustrated on the phase portraits. The cells are
colored according to the cell types. The box plots of a for each cell type predicted
by cellDancer are included to show the boost in the a rates in the course of
erythroid maturation, especially in erythroid 3. ¢, The velocities derived from
cellDancer for gastrulation erythroid maturation using transcriptional boost
genes are projected on the UMAP of the original work, demonstrating that
cellDancer caninfer the correct cell differentiation direction by using only the
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transcriptional boost genes. d, Gene-shared pseudotime on UMAP is consistent
with the progression of gastrulation erythroid maturation. e, Genes that show
high similarity in transcriptional changes along time are classified into eight
clusters according to their transcriptional changes. The heat map describes

the expression of the genes along time (rows: genes; columns: cells ordered
accordingto the pseudotime). Genes were selected by Pearson correlation
coefficient (R?) > 0.8.f, Average expression of each cluster along the pseudotime
(top) and the enriched pathways for each cluster of genes (bottom) (Benjamini-
Hochberg procedure, one-sided, P < 0.05). Pvalue indicates the significance of
enrichment of a pathway in Fisher’s exact test. g, In silico perturbation analysis by
dynamo shows a critical role of Gata2in hematopoiesis.
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first inferred major trajectories during cell differentiation from the
transition matrix based on the correlation of velocities among neigh-
bor cells (Methods). Then, we estimated a universal pseudotime from
trajectories to capture the cell’s position along with the erythroid
maturation. The pseudotime of cellDancer accurately illustrated the
transcriptional changes of genes (Extended Data Fig. 2c) and the ter-
minal of erythroid maturation (Fig. 2d). To delineate the dynamics of
transcriptional activity, we grouped genes into eight clusters based on
the similarity in the transcriptional changes along pseudotime (Fig. 2e).
The expression of genesin the first three clusters was high at the early
stage in the hematoendothelial progenitor cells and diminished dur-
ing differentiation. Gene expressionin clusters 4-6 decreased slower
thanthegene expressioninthefirstthree clustersand decreased close
to zeroin the erythroid 3 subpopulation. Gene expressionin clusters
7 and 8 increased during erythroid maturation. We next investigated
the biological function of each gene cluster during erythroid cell dif-
ferentiation. Gene Ontology (GO) analysis through DAVID? showed
that these genes are highly enriched in the angiogenesis and wound
healing pathways. Genes in clusters 4-6 were enriched in basic cellular
functions, including cell cycle, cell division, chromatin organization,
RNA splicing and translation pathways. It is not surprising that these
genes are enriched in erythrocyte development, heme biosynthetic
process, oxygentransportand cellular oxidant detoxification pathways
(Fig.2f). Finally, we applied dynamo®*toinsilico suppress the expression
of Gata2, a critical regulator in hematopoiesis, in blood progenitor 1.
We observed the diversions of hematopoietic fate after the perturba-
tion (Fig. 2g), which is consistent with the experimental study?.

Inferring RNA velocities on each branch for branching genes
We evaluated cellDancer using data from the branching lineages in
mouse hippocampus development. There are five major branching
lineages in the mouse hippocampus, corresponding to dentate gyrus
granule neurons, pyramidal neuronsin subiculumand CA1, pyramidal
neurons in CA2/3/4, oligodendrocyte precursors (OPCs) and astro-
cytes. The cellvelocity graph shows that cellDancer accurately inferred
five major branchinglineagesin hippocampus development (Fig. 3a),
confirming the reliable performance of cellDancer on multi-lineage
populations.

We further studied the velocity inference of individual branching
genes. As branching genes have different reaction rates among line-
ages, they have lineage-specific regulation of transcription, splicing
and degradation and often play an important role in hippocampus
development. For example, branching genes are vital to neurogenesis
(Diaph3, KIf7 and Ncald; Extended DataFig. 3)**?*and areinvolved in the
differentiation of the neural system (Cadm1 and Gpm6b)”*®. Branching
genes are also related to neurological or neuropsychiatric disorders.
Forinstance, mutations of Gnaol may contribute to epilepsy, develop-
mental delay and movement disordersin the neural system®. Aberrant
Psd3proteins are related to autism spectrumdisorder and schizophre-
nia*°. We applied cellDancer to the branching genes. Phase portraits
show that cellDancer can accurately infer the velocities of branching
genes on each lineage (Fig. 3b and Extended Data Fig. 3), whereas
scVelo, velocyto, DeepVelo and VeloVAE predicted the correct veloci-
ties on a limited number of cells (Fig. 3b and Supplementary Fig. 2).
Moreover, cell-specific a, f and y were inferred on each branch. For
instance, neurotrophic tyrosine kinase receptor type 2 (Ntrk2)* has
two major branches: the upperbranch corresponds to astrocytes and
OPCs, and the lower branch corresponds to dentate gyrus granule
neurons and pyramidal neurons (Fig. 3b). Astrocytes and OPCs have
high aand low B, resultingin high expression of unspliced Ntrk2 on the
upper branch. Dentate gyrus granule neurons and pyramidal neurons
have high fand low y, resulting in high expression of spliced Ntrk2 on
the lower branch (Extended Data Fig. 3).

cellDancer calculates aminimized loss function after optimizing
aDNN for each gene. A small loss score indicates a good fit with the

RNA velocity model. We ranked genes based on their loss function
score. Top-ranking genes include both mono-kinetic and branching
genes (Fig. 3c). Next, we performed GO pathway enrichment analysis
through DAVID* for the top 500 genes. The enriched pathways are
associated with neurogenesis, nervous system development, neuron
differentiation, synaptic signaling, chemical synaptic transmission
and brain development (Fig. 3d).

We applied pseudotime analysis to infer the differentiation order
of cellsin hippocampus development. cellDancer automatically iden-
tified radial glia cells as a shared root state of hippocampus develop-
ment (Fig. 3e), which is in good agreement with the previous study?.
We also identified five terminal states without prior knowledge of the
number of branchesin the development process and applied dynamo
to predict the most probable path of each terminal state (Fig. 3e). The
pseudotime analysis of cellDancer suggests that astrocytes and OPCs
are produced earlier than granule neurons and pyramidal neurons.
Together, cellDancer has the capability to infer the global differentia-
tion pseudotime of branching cell lineages.

We investigated the temporal progression of transcription dur-
ing hippocampus development. We observed multiple expression
patterns of individual genes on different branches. For instance, Dcx
transiently upregulates in neuroblasts with consistently low expres-
sion in astrocytes (Fig. 3f), which is supported by previous studies
that Dcx transiently expresses in the early neurogenesis stage and is
awidely used marker for neurogenesis***. By contrast, genes associ-
ated with neurogenesis, such as Slc4a10 (ref. 35), Ncald®® and Ntrk2
(ref. 31), show increasing expression in all branches at different rates
(Extended DataFig.4).

Vector fields analysis using cell-specific RNA velocity
cellDancer extends the bulk reaction rates (a, f and y) to single-cell
resolution in an scRNA-seq experiment. As gene expression is regu-
lated by transcription, splicing and degradation, the reaction rates
tend to be more stable than expression in a cell type during cell dif-
ferentiation (Fig. 4a). Thus, we asked if the cell-dependent reaction
rates in cellDancer provide biological insights into cell identity. We
applied cellDancer to infer cell-dependent &, S and y in the endocrine
development of the mouse pancreas profiled from embryonic day 15.5
(E15.5)*. Previous works reported four terminal cell typesin endocrino-
genesis, including glucagon-producing alpha-cells, insulin-producing
beta-cells, somatostatin-producing delta-cells and ghrelin-producing
epsilon-cells¥”. UMAP of transcriptome shows that alpha-, beta-, delta-
and epsilon-cells are distributed closely (Fig. 4b). Reaction param-
eters are always more consistent than transcriptomes in a cell type.
For instance, expression of Sulf2 increases in Ngn3-low endocrine
progenitors and decreases in pre-endocrine (Fig. 4c), whereas ais a
similar positive value in Ngn3-low endocrine progenitors and -0 in
pre-endocrine. Next, we investigated the overall similarity of a, 8 and
yin each cell type. We applied UMAP to embed a, f and y into two
dimensions. Alpha-, beta-, delta- and epsilon-cells separate into dis-
tinctgroups on UMAP of a, fand y (Fig. 4d and Supplementary Fig. 3),
suggesting that cell-specific @, fand y are available as anindicator of cell
identity. Notably, the cycling subpopulation of ductal cells and endo-
crine progenitors was separated from those without cycling (Fig. 4e).
Furthermore, we inputted the cell velocity to the established
framework dynamo, which provides rich downstream analyses by
learning differentiable velocity vector fields and inferring gene regu-
lation networks. Noticeably, absorbing fixed points are identified
in the alpha-, beta- and epsilon-cells, and an emitting fixed point is
identified in the pancreas progenitor cells (Fig. 4f). To investigate the
alpha-cell and beta-cell fate determination, we inspected the expres-
sion of Arx and Pax4, two well-known transcription factors that deter-
mine the endocrine cell fates (the alphaand betalineages)**. Consistent
with the previous study’®, we observed exclusively high expression
of Arxand Pax4inthe alpha-cells and beta-cells, respectively (Fig. 4g).
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Fig. 3| Identifying the branching lineage in the hippocampus development.
a, The velocities derived from cellDancer for the mouse hippocampus development
dataset are visualized on the pre-defined t-SNE embedding. Directions of the
projected cell velocities on t-SNE are in good agreement with the reported
directions. b, The phase portraits of two branching genes (Ntrk2 and Gnaol)
predicted by cellDancer, scVelo dynamic mode, velocyto, DeepVelo and VeloVAE
demonstrate the advantage of cellDancer in predicting the velocities of the
branching genes. The RNA velocities of Ntrk2 and Gnaol predicted by cellDancer
are consistent with the expectation of hippocampus developmental progress,
whereas the directions predicted by others areinconsistentin part. The cells

are colored according to the cell types. ¢, Distribution of the minimized loss for
allthe genes. Those genes with low loss scores show mono-kinetic or divergent
dynamics, whereas genes with high loss scores show pattern-less phase portraits.

d, The GO pathway enrichment analysis using adjusted Pvalues of Fisher’s exact
test (Benjamini-Hochberg procedure, one-sided, P < 0.05) of DAVID for the

500 genes with the lowest training loss score shows that these genes are highly
involved in pathways associated with nervous and brain development. e, Gene-
shared pseudotime is projected on t-SNE by cellDancer, and the most probable
paths areinferred by dynamo, showing the order of cell differentiation during
hippocampus development. f, The phase portraits (left, cells colored according to
a), the expression on t-SNE embedding (middle) and the expression pseudotime
profiles (right) for the genes Dcx and Psd3. Dcx (top) and Psd3 (bottom) have distinct
dynamicbehaviors. Dcxis amono-kinetic gene (left), and its expression gradually
increasesin neuroblasts (right). Psd3is abranching gene (left), and its expression
increasesin each branchinglineage at different speeds (right). FDR, false discovery
rate; nIPC, neural intermediate progenitor cell.

Nature Biotechnology | Volume 42| January 2024 | 99-108

104


http://www.nature.com/naturebiotechnology

Article

https://doi.org/10.1038/s41587-023-01728-5

a ° Cell type 2 N b
N °
2 e ° °
S —
§ e Beta
s
x
u| e
Ductal Epsilon
_ | Celltype1
~
LS
5 o Cell type 2 By
\g 2 W (;
N R ?,4 A
- < E% ik 2
Pseudotime % . i&; v
Ngn3-high EP
UMAP1
c d
Sulf2 Embedding @, B and y
Cell type Epsilon
Alpha o .f/Delta
L
Pre-endocrine
3 Beta .
o #
o
[72)
C
S Ngn3-high EP
Spliced Spliced Ngn3-low EP
&
<
f Confidence =
Ductal
UMAP1
€ o5
® G,M
v
g /‘”’
o
1x10°5 5 -
X
9 dfPax4 OfArx Jacobian I8 UMARI
OXArx OxPax4 value 6
Alpha Beta
Pax4
m
0 2
Expression

Fig. 4| Deciphering cell identity with cell-specific reaction rates and
analyzing gene regulation through vector fields. a, Schematic illustration
shows that the a, Bor y rates of the genes may be a good indicator of the cell
types rather than the expressions of the genes. b, The velocities derived from
cellDancer for the pancreatic endocrinogenesis cells are visualized on the pre-
defined UMAP embedding. ¢, Phase portraits of the gene Sulf2. The a rates of
the Sulf2 gene for each cell calculated by cellDancer clearly illustrate the gene’s
induction and regression phases (left). Sulf2is ininduction in the Ngn3-high
embryonic progenitor (EP) cell type and in regression in the pre-endocrine

celltype, whereasit is barely transcribed in other cell types (right). d,e, UMAP
embedding using the cell-specific a, S and y rates calculated by cellDancer
indicates that our computed kinetics rates might be useful in assigning cell
subpopulations (d) and cellidentity (e). f, The velocity vector fields were learned
by dynamo. The red digit O reflects the identified emitting fixed point. The

black digits 1,2 and 3 reflect the absorbing fixed points. g, Jacobian analysis

and the gene expression of Arx and Pax4 on the UMAP space. It shows that Pax4

is downregulated by Arxin alpha-cells. Arxis downregulated by Pax4 in beta-cells.
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Then, we used dynamo to perform Jacobian analyses and detected
mutual inhibition between Arx and Pax4 in the alpha-cells and
beta-cells. These analyses are in line with the experimental findings®
and provide mechanistic insight from gene regulation at single-cell
resolution, showing that cellDancer can be seamlessly integrated with
downstream analysis, such as dynamo vector field analysis.

Revealing the turnover strategies of mRNA during cell cycle
Aprevious study showed that metabolic labeling technology, such as
sequencing mRNA labeled with 5-ethynyl-uridine (EU) in single cells
(scEU-seq), can measure the synthesis and degradation of mRNA
using the sequencing method*’. Furthermore, Qiu et al.”> showed
that scEU-seq can be used to predict the dynamics of the cell cycle. To
investigate whether the predicted kinetic parameters are consistent
with the experimental measurements, we used metabolic labeling data
(thatis, scEU-seq) of RPE1-FUCCI cells at specific points during cell
cycle progression as abenchmark®’. We first clustered RPE1-FUCClI cells
into eight groupsbased on cell cycle stages and calculated the average
spliced and unspliced expression of cell-cycle-associated genes, which
also have synthesis and degradation ratesin scEU-seq (Extended Data
Fig. 5a). We applied cellDancer to predict the velocities and kinetic
parameters of cell cycle genes and compared the predicted e and y to
the experimentally derived synthesis and degradation rates measured
by scEU-seq*’ (Extended DataFig. 5b). Overall, the predicted aand y are
associated with the experimental measurements of mRNA synthesis
and degradation (Extended Data Fig. 5b,c), especially in the highly
expressed genes (Extended DataFig. 5a). We also observed a difference
between the predicted a and scEU-seq synthesis rates in the Gl state
for the low-expression genes, of which expression starts to increase
at the Gl state (Extended Data Fig. 5a). Our prediction captures this
increase by arelatively large ain the Gl state, whereas scEU-seq shows
alow synthesis rate, which may be due to the potential limitation of
scEU-seqinthelow-expression genes. Next, we predicted the velocity
flow and pseudotime of the cell cycle procession using cell cycle genes.
cellDancer predicts the direction of transcriptome shifting and the
pseudotime duringthe cell cycle (Extended Data Fig. 5d). Together, the
cellDancer-predicted kinetic parameters reflect the reality of mRNA
turnover ratesin cell cycle.

We further investigated the functions of genes with different
kinetic patterns. We grouped genes into seven clusters according to
dynamic patterns of a and y (Extended Data Fig. 6a). We calculated
the correlation of a and y and the average expression in each cluster
(Extended Data Fig. 6b). We identified three positively correlated
groups and four negatively correlated groups, indicating different
turnover strategies in the clusters. Next, we investigated the func-
tions of genesin each cluster through DAVID* (Extended DataFig. 6¢).
Overall, all clusters are associated with cell cycle pathways, including
cell division, proliferation, chromatin remodeling, DNA replication
and cell cycle checkpoints. We noticed that the genesin cluster F have
large transcription and degradation rates in the mitosis stage, indicat-
ing a fast turnover of mRNAs. The genes in cluster F are enriched in
pathwaysrelated to cellcommunication, including signal transduction,
enzyme-linked receptor protein signaling, TGF-f3 receptor signaling
and stress-activated protein kinase signaling, suggesting a quick com-
munication of cells during mitosis.

Toinvestigate the capacity of cell-specific ratesinidentifying cell
subpopulations, we recaptured that pseudotime is continuous in the
gene expression space duringthe cell cycle. Specifically, the G2 phase
(pseudotime 0.8-1) is in proximity to the M phase (pseudotime 0-0.2)
(Extended DataFig. 6d). Then, we clustered the cells into 17 subpopula-
tionsaccordingto the cell-specific rates (Extended Data Fig. 6d) using
SCANPY* and used the hierarchical method to further cluster each
subpopulation (Extended Data Fig. 6e). We found that these subpopu-
lations were globally clustered together in good agreement with cell
cycle pseudotime except clusters 3 and 4 (a cell subpopulation at the

Mphase). Thereactionrates of this cell subpopulation are moreinline
with clusters 1and 2, which are at the G1 and S stages (Extended Data
Fig. 6e). Next, we compared the gene expression and reaction rates
of this intricate cell subpopulation with the other cells. We identified
116 differentially expressed genes and 181 genes having differential
transcriptional rates by comparing this subpopulation to the rest
and found that only 10% of genes having differential transcriptional
rates were captured by the raw expression (Extended Data Fig. 6f).
We further investigated the enriched pathways of these 163 genes that
are uniquely identified by the rates through DAVID?. Those genes are
enriched with cell division pathways, such as cytokinesis, cell division
and mitotic metaphase congression (Extended Data Fig. 6g), sug-
gesting that transcriptional regulation plays animportant role in cell
division at the M stage.

Decoding human embryonic glutamatergic neurogenesis

We further investigated RNA velocity on an scRNA-seq dataset of the
developing human forebrain at 10 weeks after conception, whichwas
used as abenchmark in previous studies'>*2. We used cellDancer to
predict RNA velocity on humanembryonic glutamatergic neurogenesis.
The velocity on the embedding space and the derived pseudotime show
that cellDancer accurately recaptures the cell fate of human embryonic
glutamatergic neurogenesis (Extended DataFig. 7a,b). The velocities of
genes that are vital to neural development and neurogenesis, such as
ELAVL4 (ref.43) and DCX****, were also correctly predicted (Extended
Data Fig. 7c).

Totest whether cellDancer is sensitive to the methods of neighbor
cell detection, we applied cellDancer to predict velocity vector flow
based on the nearest neighbors defined by the spliced RNAs or by the
spliced and unspliced RNAs. Results suggest that the prediction of
velocities using spliced RNAs is consistent with the prediction using
spliced and unspliced RNAs (Extended Data Fig. 7a).

cellDancer has arobust and efficient performance

The high proportion of zero reads is a key feature in scRNA-seq data,
one cause of whichistechnical dropout. We tested whether cellDancer
is robust with technical dropout (Extended Data Fig. 8a). cellDancer
was ableto correctly predict the gene dynamics even with high dropout
ratios and learned RNA velocities in noisy scRNA-seq data (Extended
DataFig. 8b).

Next, we tested the robustness of our algorithm among different
cellnumbers. We gradually reduced the number of cells from10,000 to
1,000in the simulation dataset to predict RNA velocity and compared
the prediction of a/fand a/y. Results show that our modelis robustin
data with sparsity (Extended Data Fig. 8c).

We tested the sensitivity of the stopping criteria for the training of
cellDancer DNN. Two key parameters, ‘checkpoint’ and ‘patience’, are
associated withthe stopping criteria. We performed the full cellDancer
analysis in the mouse hippocampus development experiment using a
different number of checkpoints and patience for training. cellDancer
shows low sensitivity to the stopping criteria of training (Extended Data
Fig.9).Furthermore, cellDancerindependently predicted anindividual
DNN for each gene, which allows us to apply the multi-processing
approach to speed up the efficiency. Overall, cellDancer has an opti-
mized runtime (Extended Data Fig. 10).

Discussion

In this study, we first showed that RNA velocity was automatically
inferred from a neural network by optimizing a simple loss function
based on local cosine similarity and implemented this deep learning
algorithmto cellDancer, whichis aflexible, robust and extensible frame-
work for velocity inference. Our algorithm delivers four innovations.
First, cellDancer overcomes the barriers for inferring RNA velocity
with multiple kinetics, such as branching genes and transcriptional
boost genes by local but not global velocity estimation. cellDancer also
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largely improves the reaction rates inference from bulk to single-cell
resolution and illuminates the regulation of transcription, splicing and
degradation at asingle-cell resolution.

Second, cellDancer can be adapted to other velocity ordinary dif-
ferential equations (ODEs) using the same framework. cellDancer does
notrequire ananalytic solution for ODEs. Therefore, cellDancer canbe
conveniently extended from original velocity ODEs to other extended
ODEs. For example, scVelo and another recent study, UniTVelo*,
proposed two stochastic models that considered the second-order
moments of dynamics of the transcriptome to resolve cell-specific
dynamics. To adapt to those velocity models, we could modify step
2 (computing predicted spliced/unspliced mRNA abundance) in the
cellDancer workflow by using the velocity ODEs without changing
other steps.

Third, cellDancer is highly modularized and extensible to
multi-omics velocity models. As explained in the Methods, cellDancer
isapplicable to dynamics governed by first-order rate equations. More
generally, in principle, cellDancer fits any dynamics following these
rate kinetics:

dre) _
ar =f(T(®.R(®)

where T(¢) is the abundance vector of mRNAs, proteins, etc.; R(¢) isthe
reaction rates vector; and fis a function of T(f) and R(¢) and does not
explicitly contain time t. Forinstance, Gorin et al.* developed a protein
velocity model by extending the RNA velocity model to cell surface
protein translation. The protein velocity model has one more equa-
tion thanthe RNA velocity model to delineate the translation process.
cellDancer can adapt to protein velocity by adding protein abundance
into the input matrix and updating the module of loss function from
RNA velocity to protein velocity. Moreover, chromatin accessibility
measured by single-cell assay for transposase-accessible chromatin
withsequencing (scATAC-seq)*® can be likewise included in cellDancer
toreinforce the estimation of the transcription rates.

Finally, cellDancer DNN is scalable. A small, fully connected DNN
was used in cellDancer to boost the running speed. If the relationship
between kinetic parameters and spliced/unspliced mRNA abundance
is complex, or multi-omics data are included in the velocity model,
the fully connected DNN can be replaced or extended by other DNNs,
such as alongshort-term memory (LSTM) network* or a convolutional
neural network (CNN)*8. This feature allows us to customize an optimal
network structure based on the complexity of the velocity model and
experimental data. Furthermore, due to the limitation that scRNA-seq
capturesonly spliced and unspliced mRNA abundances, it is unfeasible
toinfer the absolute magnitude of the RNA velocity and the underlying
(a,8,y) values using only scRNA-seq data. Additional time information
introduced by experimental techniques, such as metabolic labeling
or different timepoint datasets, could be incorporated to obtain such
absolute kinetic rates. This functionality would be included inafuture
version of cellDancer.

Together, cellDancer represents anotable advance to quantitatively
predictthetimeevolutionof cellular transcriptomics, applicable tonumer-
ous biological models and disease processes at agenome-wide scale.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
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Methods

Modeling RNA transcriptional dynamics

The reaction kinetics of a single gene is described by two ordinary
differential equations:

d‘;(t) —a)-BOu® )
dsm =BOU®O -y O @

where u(t) and s(¢) are time-dependent concentrations of the prema-
tureand mature mRNAs, and a, §, yindicate the transcription, splicing
and degradation rates, respectively. For simplicity, one of the key
assumptionsin previous models for estimation of RNA velocity is that
aiseither a constant (velocyto model) or abinary (scVelo model) value,
and fand yare shared by all the genes and cells. However, the assump-
tion fails in evaluation of a heterogeneous cell subpopulation. In this
study, we developed cellDancer, a deep learning framework, to general-
ize estimation of RNA velocity inboth homogeneous and heterogene-
ous cell populations by predicting cell-specific time-dependent a, and
yfrom premature and mature reads. A unique feature of the cellDancer
framework isits capability to determine gene-specific kinetics that can
be described by the rate equations (Egs.1and 2).

In cellDancer, we use a DNN with a set of network parameters ()
to learn the unknown functions that map the predictive features to
the rates. Specifically, for gene i in the scRNA-seq dataset, there are
n captured cell snapshots (¢ = ¢, t,,...,t,) at different stages of the cell
development (for simplicity, we also refer to time ¢;as ‘cellj” throughout
the paper), and we formulated the reaction rates as functions of the
abundances of the unspliced and spliced mRNAs in Eq. 3:

(@), B0, V(1) = Oy (u (8),5 () @)

where the DNNis described as amapping ® with gene-specific network
parameters (6). To train the DNN, we send one gene to the DNN at a
time. We randomly sample asubset of cells (detailsin the ‘Model param-
eters’ subsection) as the inputin each epoch of training. We leave out
thesuperscriptnotationiinthe following detailed steps for prediction.
First, the reaction kinetics ODEs in Eqs.1and 2 are discretized:

u(t+A)—u(o

N = au®.50) - Bu®.s©)u, )
$LIZ50 g swpuo-rw.so1s@©, )

where pseudotime tis discretized and Atis aninfinitesimal timeincre-
ment. We use cellDancer to jointly predict cell-specific a(u(t), s(t)),
Bu(t), s(t)) and y(u(t)), s(t,)) given spliced and unspliced mRNA abun-
dance u(t) and s(¢)) of cellj. Second, we use the predicted rates to cal-
culate the extrapolated mRNA abundance s(¢;+ At) and u(¢;+ At) by the
discretized reaction kinetics. To measure the difference between pre-
dicted and true velocity vectors, we define a loss function £based on
every cell’s cosine similarity between the predicted and observed
velocity vectors:

n
L=34 (6)
J=1
by
Lj=1—mgx - 7)
U fy = Jy]
b= (u(G+80) - u (), 5(6 +A0) = (1), ®

v = () - u(t).s(6) - 5(0), ©

£(£)istheoverall (cellj) loss function; v; (v) is the predicted (observed)
RNA velocity vector, where {j} is a collection of cells in the neighbor-
hood of cellj; and ¢, is the observed cell in the neighboring cells {j’} that
minimizes the loss function for cellj. Note that the neighboring cells
are controlled by the number of n_neighbors and can be either
gene-specific (calculated in the phase space of each gene) or
gene-shared (calculated inthe embedding space using the abundances
of the spliced mRNA or the abundances of both the spliced and the
unspliced mRNA).

Finally, we obtain 6 by minimizing the overall loss function £ for
gene i by applying the Adam optimization algorithm in a DNN. The
configuration of the DNN is as follows: an input layer with 2n nodes;
two fully connected hidden layers each with 100 nodes and the leaky
ReLU activation function; and an output layer with 3n nodes. The sig-
moid activation function o (x) = +— is applied as a regularization to
constrain the outputs (a, 8 and y) within the range [0, 1]. The learning
rate of the Adam optimizer is 0.001. The weight decay is 0.004, which
adds L2 penalty to the weights parameters and prevents overfitting.
The training of the DNNs is terminated if the loss function does not
decrease after three checkpoints. Those training parameters are fully
controllable by the userin the cellDancer command lineinterface. The
DNNin cellDancer isimplemented using PyTorch Lightning*, awidely
used Pythonlibrary.

Simulation details

To assess the accuracy and limitation of cellDancer, we generate vari-
ous kinetic regimes of the expression profiles using time-dependent
rates of transcription, splicing and degradation (a,8,y). Specifically, for
onegene, aset of differential equationsis solved by numericalintegra-
tion using the function integrate.solve_ivp under the SciPy package™
with the Runge-Kutta method®*. The unspliced and spliced reads
are initialized to 0. Gaussian noises are added to the generated gene
expression level for each cell.

We simulate the spliced and unspliced expression of 2,000 cells
and 1,000 genes for transcriptional boost, multi-forward branching
and multi-backward branching regimes. For transcriptional boost
genes, « is sampled from a uniform distribution of U(1.6, 2.4) before
boostingand U(4, 6) for cells after boosting where the lower and upper
limits are set by varying 20% from the mean values of 2 (before boost-
ing) and 5 (after boosting). fis sampled from a uniform distribution of
U(1.8,2.2) for all cellswhere the lower and upper limits are set by varying
10% from the mean value of 2. yis sampled from a uniform distribution
of U(0.9, 1.1) where the lower and upper limits are set by varying 10%
from the mean value of 1 for all cells. For multi-forward branching
genes, ais sampled from a uniform distribution of U(0.8,1.2) for cells
inthe firstlineage and U(4, 6) for cellsin the second lineage where the
lower and upper limits are set by varying 20% from the mean values
of 1(firstlineage) and 5 (second lineage). Bis sampled from a uniform
distribution of U(0.4, 0.6) for cells in the first lineage and U(0.8, 1.2)
for cellsin the second lineage where the lower and upper limits are set
by varying 20% from the mean value of 0.5 (first lineage) and 1 (second
lineage). yis sampled from a uniformdistribution of U(0.2, 0.3) for cells
inthefirstlineage and U(4, 6) for cells in the second lineage where the
lower and upper limits are set by varying 20% from the mean values of
0.25 (firstlineage) and 5 (second lineage). For multi-backward branch-
ing genes, a is set to 0 in all cells. S and y are sampled from a uniform
distribution of U(0.9, 1.1) where the lower and upper limits are set by
varying 10% from the mean value of 1 for all cells. In the first lineage,
cellsstart fromaregion around a point of (s =1.3, u = 0.2) to decrease.
Inthe second lineage, cells start from aregion around a pointof (s=1,
u=1)todecrease. The data are used as input of astandard cellDancer
analysis pipeline. After velocity estimation, we calculate an error rate to
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evaluate the accuracy of cellDancer against the ground truth velocity.
Theerrorrateis calculated as the percentage of cells having alow cor-
relation coefficient (lower than 0.7 as a cutoff) between the estimated
velocity and the ground truth velocity.

Toinvestigate the robustness of cellDancer in datawith high tech-
nical dropout, we simulate dropoutinthe expression of unspliced and
spliced mRNAs. According to the experimental datasets in this study,
the average dropout ratios for the unspliced and spliced mRNA reads
areintherange of 50%to 70% for the top 2,000 highly variable genes.
Therefore, for dropout ratios of 50%, 60% and 70%, we simulate 1,000
genes each. To achieve this, we first generate the spliced and unspliced
abundances (uj‘ﬁand sj’ﬁfor geneiof cellj), which follow the transcriptional
dynamics equations (Eqs. 1and 2). We assume that those abundances
areaveraged over the raw counts (U’%i,}and Szi,}) oftheneighboringcells,

asinreal scRNA-seqdatathose raw counts are zero-inflated. Based on
this assumption, for ageneiin any given cellj, we randomly generate
spliced and unspliced raw counts that follow the Poisson law
(Uzl.,} ~ Poisson (u!)and St ~ Poisson (s!))for 200 neighboring cells {j'}.
We performagrid search for the kinetic rate parameters (a,8,y) in the
range [0.1,1.0] at a step of 0.1. We use kinetic parameters that lead to
dropoutratios (50% + 3%, 60% + 3% and 70% + 3%) in our RNA velocity
estimation, where the averaged raw counts (sample average) are used
for the unspliced and spliced abundances.

Pseudotime estimation
The RNA velocity vector for acelljis represented by a high-dimensional

vector v; = (ujl uj?, ujg) where g is the total number of genes and vj’ is

the velocity for gene i in cellj. Following the method of velocyto and
scVelo, we project the velocity vectors of the cells into the
low-dimensional embedding space {£},,, usingembedding algorithms
such as PCA, t-distributed stochastic neighbor embedding (t-SNE) or
UMAP for visualizationand gene-shared pseudotime estimation. Under
the assumption that the more correlated the change in the gene expres-
sion & =s; — s/ from cellsj andj’ with the direction of the velocity v,

the higher chance that cellj could transition to cellj/, we construct the
transition probability matrix by applying an exponential kernel to the
correlation between 6. and v;:

corr(v;.81 )
Pj xe o

(10)
where 0= 0.05. Anormalization factor is applied to ensure the sum of
transition probabilities for cellj to its neighboring cells (N, which is
determined by k-nearest neighbors in the high-dimensional space or
optionally the low-dimensional embedding space) is1:

2oenbir =1 (1)

The velocity of celljon the low-dimensional embedding space {£}
isestimated as

b= zj'eN Py —1)8j. (12)

where 8, is the unitary vector of the displacement between celljand’
inthe embedding space.

To detect the cell state transition paths and track the continuous
changes in transcriptome along those paths, we sort the cells in tem-
poral order by carrying out cell (gene-shared) pseudotime analysis
based on the RNA velocities. First, we divide the low-dimensional
embeddingspace {} toa customized grid to smooththe abrupt velocity
vector flows, and the velocity of a celljinagrid / (or ‘metacell’) is esti-
mated as the mean velocity 7, of the enclosed cells. We then generate

a pool of trajectories {{j*.(to),é}f(tl),é}(tz),...

r:l,...,"repeats o
}' tracing the

J=1, o cens

velocity streamlines starting from any cellj using the following equa-
tion of motion:

&+ A0 =)+ GAL. (13)

A Gaussian-distributed swaying angle 6 € N(0, /6) is applied at
every timestep to allow a slight deviation from the direction of the
velocity flow. Second, fromthe trajectory pool, we select mtrajectories
{L(6)}<1..n Wwhose traverse length is a local maximum (or long trajec-
tories, asshownin Extended Data Fig. 2d for the erythroid maturation
dataset). The traverse lengthis computed as the accumulated distance
of atrajectory Y, || §(¢t+ At) - £(t) || The long trajectories are deter-
mined by iteratively selecting the longest trajectory and eliminating
its similar trajectories within a cutoff until no trajectory is left in the
pool. The fate of aneighboring celljis decided by whether most of the
trajectories originated from the position of cell j, {(t,), terminate on/
aroundalongtrajectory L (t). The pseudotime ¢;of celljis then assigned
as the time on L(t), where L(t)) is closest to §(t,) (Extended Data
Fig.2d). Finally, at thismoment, all the cells are assigned a relative time
accordingtotherespective paths, or ‘time zones’, and we need to adjust
the relative time of the cells by finding the time shift between those
‘time zones’. This is done based on an assumption that ‘overlapping’
cells (in practice, we consider cellsin close proximity) in theembedding
space (or optionally in the high-dimensional expression space) also
share the same time. The assumption is consistent with the assumption
on which the transition probability matrix is based. The time for the
cells in each ‘time zone’ (or cluster) is adjusted using a graph-based
approach. The time adjustment algorithm is outlined below.

(1) Construct the graph. Every cluster forms anode, and an edge is
formed between nodes [ and m if there is a time shift Az, =¢,— ¢,
between the ‘overlapping’ cells going for path L,and path L.
Therefore, each cell abiding by the L, ‘time zone’ needs addi-
tion of At,,, to the original cell time to consolidate all the cell
time in the two clusters.

(2) Divide the graphinto individual trees. If the graph is a forest, di-
vide it into trees. If a cycle exists, the time adjustment algorithm
fails. In the latter scenario, we suggest reducing the n_path
parameter to reduce the number of long trajectories.

(3) Compute the accumulative time shift szs needed for each node
ke{l,2,..., N4} ineach tree Tin a few steps.

(4) Initiate {rz"s} with O for eachnode k € {1,2,...,n,,4}- Initiate a
marker for each node {flag,} with 0.

(5) Startfromanodeoand set the marker to 1. Traverse all the
connections. For a connection between node [ and m: add 2% by
At,,if lequals 0 and set the marker for node m to 1; subtract 2
by At,, if m equals o and set the marker for node [ to flag, =1.
Repeat the process until all the nodes are marked as 1.

scRNA-seq data and pre-processing
AllscRNA-seq datain this study were downloaded publicly (see details
inthe ‘Data availability’ section).

(1) Forthe pancreatic endocrinogenesis data, we followed the
method by Bergen et al. in the scVelo study” and filtered 3,696
cells with 2,000 genes for further analysis.

(2) Forthe mouse hippocampal dentate gyrus neurogenesis data,
we followed the gene and cell filtering methods by La Manno
etal.” and selected 18,140 cells with 2,159 genes.

(3) Forthe erythroid lineage of the mouse gastrulation data, we se-
lected 12,329 cells from cell types, including hematoendothelial
progenitors, blood progenitors 1/2 and erythroid 1/2/3 in stages
of E7.0, E7.25,E7.5,E7.75, E8.0, E8.25 and E8.5. We followed
the standard data pre-processing procedures in scVelo with
default parameters except that we used 100 nearest neighbors
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for the calculation of the first moment to reduce the noise in
transcripts.

(4) Forthe human embryo glutamatergic neurogenesis dataset, we
kept cells with at least 200 genes expressed and kept genes that
were captured in at least three cells. We identified all the high
variable genes with the default settings of scanpy.pp.highly_
variable_genes() by using SCANPY*. In total, 1,054 cells with
1,720 genes were selected. We used 200 nearest neighbors
for the calculation of the first moment to reduce the noise in
transcripts.

(5) Forthecell cycle progression in the REP1-FUCCI cells, we used
the scEU-seq data, in which we took 3,058 cells with the top
2,000 high variable genes from the pulse experiment. The
unspliced mRNA reads were calculated as the addition of the
unspliced labeled and unspliced unlabeled reads, likewise
for the spliced mRNA reads. We used 300 nearest neighbors
for the calculation of the first moment to reduce the noise in
transcripts. The synthesis and degradation rates (molecules per
hour) measured by scEU-seq data were obtained from the study
of the original paper*.

Model parameters

InDNN training, the learning rate and patience are associated with the
totalnumber of training epochs. Inall case studies, the learning rate was
sett0 0.001, whichis widely used in Adam optimizer. The patience was
setto3inall casestudies. Thetimeincrement AtinEqs.4 and 5wassetto
0.5.The permutation ratio determines how many cells were sent to train
the model in each epoch. We recommend using a large permutation
ratio for datasets with a small number of cells or datasets presenting
a clear pattern in gene phase portraits. Specifically, for gastrulation
erythroid maturation (12,329 cells) and the cell cycle progression in
REP1-FUCCl data (3,058 cells), we used the default permutation ratio of
0.125; for the mouse hippocampus development dataset (18,140 cells),
we set the permutation ratio to 0.1; for the pancreatic endocrinogen-
esis data (3,696 cells), we set the permutation ratio to 0.5; and for the
human embryo glutamatergic neurogenesis data (1,720 cells), we set
the permutationratioto 0.3. For all genes within the same dataset, the
DNN parameters were kept the same.

Reporting summary
Furtherinformation onresearch designisavailableinthe Nature Port-
folio Reporting Summary linked to this article.

Data availability

All the scRNA-seq raw data are publicly accessible. The pancreatic
endocrinogenesis data can be extracted using scVelo’s CLI: scvelo.
datasets.pancreas() or accessed from the original work*® under acces-
sion number GSE132188 of the Gene Expression Omnibus (GEO).
The hippocampal dentate gyrus neurogenesis data can be accessed
at http://pklab.med.harvard.edu/velocyto/DentateGyrus/Dentat-
eGyrus.loom or the original paper® under GEO accession number
GSE95753. The erythroid lineage of mouse gastrulation data can be
extracted using scVelo’s CLI: scvelo.datasets.gastrulation() or from
the original work? under accession number E-MTAB-6967 of ArrayEx-
press. Human embryo glutamatergic neurogenesis can be accessed at
https://github.com/pachterlab/GFCP_2022/blob/main/notebooks/
data/hgForebrainGlut.loom or the original work' under Sequence
Read Archive accession code SRP129388. Cell cycle progression in

REP1-FUCCI cells can be extracted using dynamo’s CLI: dyn.sample_
data.scEU seq rpel() or from the original work®> under GEO accession
number GSE128365.

Code availability
cellDancer isimplemented in Python and is available at https://github.
com/GuangyuWanglLab2021/cellDancer.
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Extended Data Fig. 1| See next page for caption.
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Extended Data Fig. 1| Resolving RNA velocity of simulated multiple rate
kinetics genes. (a) High correlation between the simulated (background truth)
and the predicted a/g (left) and y/8 (right). The Pearson correlation coefficients
(R?) between the prediction and the simulation are computed. (b) RNA velocity
predicted by cellDancer is projected onto the phase portraits of a simulated gene
with a equals 1.8 (induction) and O (repression) (left) and the density plot of the
predicted a (right). (c-e) We measured the accuracy by computing the error rate
as the percentage of cells whose predicted RNA velocity is poorly correlated

with the ground truth velocity (cosine similarity <0.7). The box plots of the error
rates show that cellDancer outperforms scVelo, velocyto, DeepVelo, and VeloVAE
inthe estimation of RNA velocities for the simulated transcriptional boost (c),
multi-lineage forward branching (d), and multi-lineage backward branching

(e) genes. Middle line in box plot, median; box boundary, interquartile range;
whiskers, 10-90 percentile; minimum and maximum, notindicated in the box

plot; gray dots, individual datapoints. The error rate is defined as the percentage
of falsely predicted directions. Different sampling ratios were investigated at
40%, 60%,80%,and 100% (n =1,000 genes), representing the ratio of the number
of post-boosting cells to the number of pre-boosting cellsin (c) and the ratio of
the number of cells in lineage 1to the number of cells in lineage 2 (d-e). Example
phase portraits for sampling ratio (1:1) are provided in each case. (f-i) The loss
scores are plotted against epochs of training on the simulated mono-kinetic (top
left), multi-lineage forward branching (top right), transcriptional boost (bottom
left), and multi-lineage backward branching (bottom right) genes at quantiles O,
0.1,0.4,0.6,0.9,and 1. In all cases, the loss scores converge in about 25 epochs,
except for the transcriptional boost genes, for which the convergence emergesin
about 100 epochs.
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Extended Data Fig. 2| RNA velocity estimation for the multiple rate kinetics
(MURK) genes in the gastrulation erythroid maturation dataset. (a) RNA
velocities predicted by cellDancer are projected onto the spliced-unspliced
phase portraits for aset of selected genes. (b) The velocities derived from scVelo
dynamic model, DeepVelo, and VeloVAE for gastrulation erythroid maturation
cells using MURK genes are visualized on the pre-defined UMAP embedding.
Inverted flows from the erythroid 3 to the blood progenitors 2 cell type are
observed for the scVelo and DeepVelo predictions; inverted flows from the
erythroid 3 to the erythroid 1 cell type are observed for the VeloVAE prediction.
(c) Expression pseudotime profiles for four MURK genes Hba-x, Blurb, Mlit3,

Coro2b Miit3

and Hbb-y show the expression patterns of transcriptional boost in gastrulation
erythroid maturation. (d) Long trajectories used for pseudotime estimation
ingastrulation erythroid maturation are visualized on the UMAP embedding.
Thelongtrajectories are local maxima of traverse length and are colored from
light to dark according to their unadjusted pseudotime. The schematic diagram
demonstrates how the unadjusted pseudotime of cells is determined according
to thetime in the long trajectories. The black bold lines stand for the long
trajectories and the pseudotime for the originating cells of the short trajectories
(gray lines) is obtained as the time of the closest cell in the corresponding

long trajectory.

Nature Biotechnology


http://www.nature.com/naturebiotechnology

Article https://doi.org/10.1038/s41587-023-01728-5

E . )
Low High Low High
a,By Expression

a B 14 Expression

™|

v

Ntrk2 o 4 ®0030 B

3 f@ T
a | %‘
| o -
>

Cadm1

Diaph3

Gnaol

Gpme6b

KIf7

Ncald

Psd3 jlz
P4
gs
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Panel (5) Cells are colored according to the gene expression.
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portraits of cell cycle genes show the predicted kinetic parameters are related
to experimental measurements in scEU-seq. (d) The velocities derived from
cellDancer for metabolic labeling dataset are visualized on the relative position
along the cell cycle using the Geminin-GFP and the Cdt1- RFP signals from the
FUCCI system. Gene-shared pseudotime on the relative position is consistent
with the experimental cell cycle position.
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Extended Data Fig. 6 | See next page for caption.
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Extended DataFig. 6 | The dynamic pattern of rates identifies the different colored by cell cycle pseudotime (bottom). (e) The hierarchical tree of the Leiden
turnover strategies of genes, and cell-specific reaction rates reveal clusters. The box plot (n = 3,058 cells) shows the pseudotime of each cluster.

cell subpopulation uncaptured by expression. (a) « and y of genes along Middle line in box plot, median; box boundary, interquartile range; whiskers,
pseudotime. Genes are clustered into seven groups according to their dynamic 10-90 percentile; minimum and maximum, not indicated in the box plot; gray
patterns of eand y. The Pearson correlation coefficients betweenaand y are dots, individual datapoints. (f) Venn diagram of genes with significant difference
calculated. (b) The normalized spliced and unspliced reads of genes along (p<0.05,FC>1.50r FC<1/1.5) on expression, «, §,and y between the clusters 3
pseudotimein each clustered group. (c) The GO pathway enrichment analysis &4 and other clusters. (g) The GO pathway enrichment analysis using adjusted
using adjusted p-values of Fisher’s Exact test (Benjamini-Hochberg procedure, p-values of Fisher’s Exact test (Benjamini-Hochberg procedure, one-sided,
one-sided, p < 0.05) for genesin each group. (d) The 3D UMAP based on o, 3, p <0.05) of DAVID for the 163 genes that only differential in a.

and y colored by Leiden clusters (top) and the 3D UMAP based on expression
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Extended DataFig. 7 | cellDancer decodes human embryonic glutamatergic unspliced reads (right). (b) Gene-shared pseudotime projected on UMAP shows
neurogenesis. (a) The velocities derived from cellDancer for human embryo the order of cell development during neurogenesis. (c) RNA velocities predicted

glutamatergic neurogenesis are visualized on the UMAP embedding based by cellDancer are projected onto the phase portraits for aset of selected genes.
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Extended Data Fig. 8 | Robustness under different dropout ratios and
number of cells. (a) Heatmaps show the overview of the simulated genes
witha dropout of 70% on both unspliced and spliced reads. We simulated raw
mRNA counts using a Poisson distribution to obtain the unspliced and spliced
abundances with 50%, 60%, and 70% technical zeros. (b) Scatter plot shows a
high correlation between the simulated (background truth) and the predicted
o/ B (top) and a/y (bottom) under different dropout ratios of the spliced and
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unspliced reads. The dropout was applied to both spliced and unspliced reads.
The Pearson correlation coefficients between the prediction and the simulation
are computed. The Pearson correlation coefficient in data with different dropout
rates is larger than 0.96 and 0.84 for a/f and a/y, respectively. (c) The predicted
a/f (top) and a/y (bottom) are plotted against numbers of cells on the simulated
mono-kinetic, multi-lineage forward branching, transcriptional boost, and multi-
lineage backward branching genes.
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calculates the loss of DNN every several epochs, which is specified by the
checkpoint. The patience means the number of checkpoints waited before
stopping the training when the loss score doesn’t decrease.

epochs to skip (or acheckpoint) when computing the loss function. cellDancer
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Extended Data Fig.10 | The speedup of cellDancer. (a, b) Scatter plots showing
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the total time (a) and the training speed (b) of cellDancer when applying

multiprocessing. We tested the parallel speedup ratio of cellDancer by increasing

jobnumbers from1to 30. We applied full analysis of cellDancer to 2,159 genes
in18,140 cells (the hippocampal dentate gyrus neurogenesis dataset) with

the default parameters and calculated the runtime and speed of different job
numbers. The evaluation of all the algorithms and the speedup ratio analysis
was performed on a 2.7 GHz 24-Core Intel Xeon W processor. Total runtime
decreases from 286 to 36 minutes when adding job numbers from1to 30 and
reaches saturation at 15 jobs with 40 minutes. cellDancer has a feasible runtime
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of 53 genes per minute using 15 jobs. The training speed (number of genes per
unit time) increases with the number of jobs. (c) Bar plot showing the total time
of the comparison between velocyto, scVelo, DeepVelo, VeloVAE, and cellDancer.
We compared the runtime of cellDancer with velocyto, scVelo, DeepVelo,

and VeloVAE. The benchmark is based on 18,140 cells and 2,159 genes in the
hippocampal dentate gyrus neurogenesis dataset with the default parameters.
We set the number of jobs (threads) to 15 for scVelo, DeepVelo, VeloVAE, and
cellDancer. cellDancer shows acomparable running time with the other two deep
learning algorithms.

Nature Biotechnology


http://www.nature.com/naturebiotechnology

nature portfolio

Corresponding author(s): Guangyu Wang

Last updated by author(s): Feb 20, 2023

Reporting Summary

Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
Confirmed

IZ The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

|:| A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

< The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

[ ] Adescription of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

|X’ A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
N Gjve P values as exact values whenever suitable.

|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|:| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

OXX O 0 OX O XOS

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  No software was used for data collection.

Data analysis The main functions of our study are open-source and could be obtained through https://github.com/GuangyuWanglab/cellDancer.
The comparison between our algorithm and other algorithms was performed by using cellDancer (v1.1.3), scVelo (v0.2.4), DeepVelo
(v0.2.5rc1), VeloVAE (v0.1.0; under commit number 018ee60998c9b63f441fdfc4836dbd5baadf1459; https://github.com/welch-lab/VeloVAE).
The GO enrichment analysis was performed by DAVID (v2021.Dec).
The analysis of Rates-based UMAP and Expression-based UMAP of scEU-seq was based on SCANPY (v1.8.2).
The network and Adam optimizer of our software were implemented based on PyTorch Lightning (v1.5.2).
The Runge-Kutta method we used to solve differential equations in our simulation was performed by SciPy (v1.7.2).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

>
Q
—
(e
(D
©
(@)
=
S
<
-
(D
©
O
=
>
(@)
w
[
3
=
Q
<

Lc0c Y21o




Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy
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from the original work under accession number GSE132188 of Gene Expression Omnibus (GEO) repository. The hippocampal dentate gyrus neurogenesis data can
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GEO. The erythroid lineage of mouse gastrulation data can be extracted using scVelo’s CLI: scvelo.datasets.gastrulation() or from the original work under accession
number E-MTAB-6967 of ArrayExpress. Human embryo glutamatergic neurogenesis can be accessed from https://github.com/pachterlab/GFCP_2022/blob/main/
notebooks/data/hgForebrainGlut.loom or from the original work under accession code of Sequence Read Archive (SRA) SRP129388. Cell cycle progression in REP1-
FUCCI cells can be extracted using dynamo’s CLI: dyn.sample_data.scEU_seq_rpel() or from the original work under accession number GSE128365 of GEO.
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